如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位角为B时,假设阴影的倍率为R,则: R = L2/L1 = ctgA×cosB 此式应按冬至那一天进行计算,因为,那一天的阴影最长。例如方阵的上边缘的高度为h1,下边缘的高度为h2,则:方阵之间的距离a = (h1-h2)×R。当纬度较高时,方阵之间的距离加大,相应地设置场所的面积也会增加。
光伏发电规模的扩大和持续发展有赖于光伏材料的不断革新和技术的不断进步。太阳能电池的发展可以追溯到1839年,法国的Becquerel最早发现了液体电解液中的光电效应;然而直到1883年才由美国的Fritts使用硒制备了一个太阳能电池;之后又经过半个世纪的发展,1930年,Schottky提出Cu2O势垒的“光伏效应”理论;同年,Longer提出可以利用“光伏效应”制造“太阳能电池”,使太阳能变成电能;随后,美国贝尔实验室的Pearson于1954年发明电池效率为6%的单晶硅太阳能电池,开启了p-n结太阳能电池的新时代,时至今日,p-n结太阳能电池仍然占据着光伏领域的地位。
一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%~20%。针对这种情况,我们要对理论计算值进行校正。通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到低程度。